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Topological properties of polymer spherulitic grain
patterns from simultaneous nucleation
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Experimental and theoretical characterization of large-scale spherulitic grain patterns of
isotactic polypropylene have been carried out under simultaneous nucleation conditions.
Rigorous image analysis has been performed to characterize the topological correlation of
grain-boundary shapes and grain sizes, as well as topological rearrangements during
thermal activation experiments. The topological and geometrical aspects of the spherulitic
grains are subjected to a comprehensive analysis, using the characterization methodology
commonly employed in studies of random cellular patterns. A distinguishing feature of
polymer grain patterns is the presence of topological defects. Topological defects have been
identified by using standard computational geometry method such as the multigraphic
construction of the grain-boundary network (GBN) and its relevant dual, the nearest-
neighbour network. The topological defects are the mixed configurations of vertices
containing three, four, five and six connectives, where the fraction of trivalent vertices is
smaller than 1. It is found firstly that the two-cell correlation functions M,(n) (the average
number of k-sided grains adjoining an n-sided grain), are clearly highly non-linear with n,
secondly that the common practice of plotting nm(n) versus n can conceal the non-linearity
of the experimental data, where m(n) is the average sum of the number of sides of the grains
immediately adjacent to an n-sided grain and thirdly that the plot of the relation of average
area of grains to the number of sides is non-linear and S-shaped, owing to the polydisperse
grain packing. These topological and geometrical characteristics indicate that the polymer
GBN does not follow either the mathematical Voronoi diagram or the common random
cellular structures displayed in many physical systems. Thermal activation experiments
show that the polymer grain pattern is a topological unstable structure with very slow
dynamics. Finally, these experimental observations are explained in relation to specific

polymeric features.

1. Introduction

It is well known that, when semicrystalline polymer
samples are crystallized from the bulk, the most fre-
quently observed structure is the spherulitic polygrain
pattern. The spherulites are composed of individual
nanometre-scale lamellar crystalline plates intersper-
sed with amorphous regions. The properties of the
semicrystalline polymer depend on the microstruc-
ture, which is defined not only by the lamellar struc-
ture on the nanometre scale but also by the spherulitic
grain pattern on the micrometre scale.

The microstructure of spherulitic grains solidified
from the melt as a polymer film exhibits a random
cellular pattern with a random distribution of areas
and number of sides [1,2]. Such two-dimensional
(2D) space-filling random cellular patterns are en-
countered in many scientific fields [3, 4]. Recent thor-
ough experimental and theoretical studies have been
devoted to the evolution of cellular patterns, such as
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soap froths [5, 6] and the coarsening of polycrystals
[7-9], and to the characterization and understanding
of the topological properties of 2D cellular structures
[10-17]. Normally, the cellular patterns are charac-
terized by topological elements and geometrical ele-
ments. The basic topological elements of the cellular
patterns are the edges (or sides), faces and vertices of
the cells, while the basic geometrical elements are the
areas and perimeters of the cells. The basic statistical
measures of cellular structures are the topological side
distribution and the geometrical area distribution. In
spite of their fundamental importance, the formation
and evolution of polymer grain patterns have not
received great attention so far.

In an earlier study [1, 2], we reported the experi-
mental characterization of the topological organiza-
tion of the highly disordered polygrains in planar films
formed during free solidification of a common model
polymer, isotactic polypropylene. The distinct features
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of the polymer spherulitic polygrains were evaluated
in order to test the validity and deviations of two
commonly used scaling laws: the Aboav—Weaire rela-
tion [3] and the Lewis—Rivier relation [3]. It was
found that the cellular grain patterns of isotactic poly-
propylene exhibit strong deviations from the two laws.
Also, it was found that the five-sided grains, and not
six-sided grains, dominate the microstructure of the
polypropylene spherulitic polygrain system. In addi-
tion, evidence was presented for firstly the existence of
lenses (two-sided grains, n = 2), which are rarely pres-
ent in other cellular structure systems, and secondly
the absence of many-sided (n > 10) polygrains, which
are usually present in most systems. Analysis by spa-
tial tessellation showed that the temporal evolution
and spatial distribution of nuclei point patterns play
a role in the formation of the grain-boundary net-
works (GBNs) in the polypropylene spherulitic poly-
grains.

Polymer spherulitic grain development gives rise to
a variety of complex structures. In order to obtain
a basic understanding of the representative topologi-
cal characteristics of polymer spherulitic grain pat-
terns as random cellular structures, we have continued
to study the free solidification of isotactic poly-
propylene during isothermal crystallization and
simultaneous nucleation. This system gives rise to the
simplest polymer grain networks owing to the
constant growth velocity and simultaneous nucleation
of all spherulities. Scrupulous image analysis was
performed to characterize the topological correla-
tions and geometrical distributions of grain-
boundary shapes and grain sizes, as well as the
topological rearrangement during thermal activation
experiments.

2. Experimental techniques

Direct experimental investigation of polygrains re-
quires real-time in-situ observations. Unlike metals
and ceramics, accurate measurements and observa-
tions could be performed by using transparent crystal
systems [8]. The slow dynamics and transparency of
polymeric systems permit accurate measurements and
observations during all stages of grain pattern forma-
tion and evolution. Digital image processing has
greatly improved our ability to analyse large numbers
of grains. Counting and size measurements are simpli-
fied substantially.

2.1. Material

Experiments were carried out with a common model
polymer, isotactic polypropylene (iPP), which was
purchased from Aldrich Chemical Company Inc.
(Catalogue No. 18238-9). The iPP employed in the
present study had the following properties: molecular
weight, M, =2.7x10% degree of crystallinity,
38 wt%; glass transition temperature, T, = 269.6 K;
melting temperature, T,,, = 439 K. A polymer thin film
20 pum thick was formed by pressing the melt between
two glass slides.
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2.2. Optical measurements and image
analysis

A polarizing microscope (Leitz Laborlux 12), equip-
ped with a Leitz hot stage for polymer film soli-
dification, was used for direct observation during
experiments. The temperatures of isothermal solidifi-
cation are controlled to within 4+ 0.1°C, in order to
obtain the simultaneous nucleation and constant
growth velocity. System stability on a practical time
scale was established by periodically monitoring the
sample over a 6 month period. Unlike polycrystalline
metals or ceramics, the network of iPP polygrains did
not exhibit detectable change during 6 months at
room temperature. When the sample was held at 50 °C
for 6 weeks, changes were still not detectable. These
results indicate that the uniform grain-boundary mo-
bility is zero at these temperatures. In order to observe
the topological stability of the grain organization and
the topological rearrangement, thermal activation ex-
periments were carried out by heating the sample to
150°C and then holding isothermally at this temper-
ature for several hours to observe the changes in the
vertex configurations and grain boundaries.

A JAVA-Jandel Scientific video measurement and
image processing system was directly connected to the
microscope via a charge-coupled device camera. This
image-processing system made it possible to capture
the images of pattern growth and polygrain formation
during solidification processing and allowed for en-
hancement of the edges if necessary. The system also
executed statistical data processing from the various
experiments and provided output of both data and
images.

In order to perform automatic grain counting and
size measurements, the digitized image should be
converted into a binary image of grain boundaries
by defining the grain perimeter and deleting the
spherulite inside texture by contrast enhancement for
every grain. The image quality obtained was suffi-
ciently good, so that there were no spurious grains or
broken lines. The next stage was to perform automatic
grain counting and size measurements. 30 images were
selected from each experimental run. The statistical
data were obtained from around 5000 grains, and the
error in measuring grain areas was less than 5%. Each
grain was labelled for further analysis. The description
of the shapes and the sizes of polygrain patterns in-
volved side and area distributions, and topological
relationships.

3. Theoretical background
There are two basic types of random cellular systems:

(a) evolutive physical cellular network patterns,
where the number of cells and sometimes the total
area change with time, such as 2D soap froths in fluid
mechanics and the coarsening of polycrystals in metal-
lurgy;

(b) non-evolutive mathematical random cellular
pattern, where the number of cells (and total space)
remains constant, such as the Voronoi diagram [18]
in computational geometry (tessellation built from
point assemblies).



Cells in 2D infinite space-filling structures usually
have at least three sides, and a rather regular geomet-
ric shape with cell vertices belonging to three cells. The
topology of cellular networks imposes constraints on
the possible configurations of the cells. For example,
for the probability distribution, P(n), of the number, n,
of edges of cells and for the two-cell correlation, M (n)
(the average number of k-sided neighbours of an n-
sided cell), the following constraints hold [12].

1. ¥ P(n) =1, the trivial constraint on probabilit-
ies.

2. {n) =Y nP(n) =06, Euler’s topological con-
straint for trivalent vertices.

3. Y,Mi(n)=n, as an n-sided cell always has
n neighbours in total.

In this section, we review the basic theoretical back-
ground for both physical random cellular networks
and a mathematical spatial tessellation diagram (the
classical Voronoi diagram) as the starting point for
the topological characterization of the polymer
spherulitic polygrain system. Detailed description of
some of the concepts involved may be found elsewhere
[3-18].

3.1. Voronoi diagrams and Delaunay
triangulation

Consider a set of points P = {py, py, ..., p;} in the 2D
Euclidean plane, called the sites. We subdivide the
plane into portions V' (p;), in such a way that all points
in each portion are nearer to p; than to any p;
V(p) = {p|dist(p, p;) <dist(p,p;) Vj#i}. This re-
sults in partitioning the plane by assigning every point
in the plane to its nearest site. All the points assigned
to p; from the Voronoi region V (p;). Since the Voronoi
regions V(p;) are the intersections of n — 1 half-planes,
they are convex polygons with straight-line edges, the
perpendicular bisectors of p; and p;. This construction
is called the Voronoi diagram [18]. The Voronoi
diagram is a tessellation built from point (site) assem-
blies, so that Voronoi polygons correspond to the
sites. Each point on an edge is equidistant from exact-
ly two sites. Normally, the vertices of Voronoi regions
are trivalent because every vertex belongs to three
Voronoi polygons. Each vertex is equidistant from
three sites.

In a graph-theoretical sense [17], the Voronoi dia-
gram is a plane network and a connectivity-three
graph because Voronoi regions are connected by three
lines whose end point is a trivalent vertex, as men-
tioned above. To gain insight regarding this complex
graph of network cells, it is important to have a thor-
ough understanding of the duality relation between
network cells. Fig. 1 shows this duality relation sche-
matically. In Fig. 1, the network with the thick solid
lines is the real-space graph (the Voronoi diagram)
and the network with thin solid lines (the Delaunay
triangulation) is the dual network. The duality rela-
tionship maps all cells of the graph to a vertex in the
dual network, all vertices to the faces of the dual, and
the edges to edges. If vertices in the real-space graph
are triply connected, the faces of the dual network are
triangles, and the dual is a triangulation as shown in

Figure 1 The dual of the Voronoi diagram (the thick-line network)
is the Delaunay triangulation (the thin-line network).

Fig. 1. The dual of the Voronoi diagram V(P) is the
Delaunay triangulation D(P). Delaunay triangulation
D(P) produces a planar triangulation of the Voronoi
sites P. It contains an edge (straight line) connecting
two sites in the plane if and only if their Voronoi
regions share a common edge. Consider all triangles
formed by the sites such that the circumcircle of each
triangle is empty of other sites. The set of edges of
these triangles gives the Delaunay triangulation of the
sites.

Because the D(P) and V(P) are dual structures,
each contains the same “information” in some sense,
but represented in rather different form. Mathemat-
ically, the triangulation has been investigated
extensively in graph theory and lattice theory, as well
as in computational geometry. The triangulation is
a better way of describing the real-space graph
for some purposes, because it is much simpler than
the polygon network. Additionally, the vertices of the
triangulation are associated with the faces of the real-
space network, which are the areas of the cells. The
description of the vertices of the triangulation is more
convenient.

It must be mentioned that the duality relationship
between both topological descriptions does not hold
for all networks. Firstly, there are actually other net-
works with connectivity three, but where the given
number of the cells is more than triangulations with
a given number of vertices. This occurs, for example, if
there are lenses in the real-space network. Secondly,
the Delaunay triangulation D(P) is a triangulation
only if no more than three sites are cocircular, for
example, if there are multiple vertices in the real-space
networks. Graphs are not allowed to have these two
cases. Networks which are not graphs are called multi-
graph [17]. We shall use this property in Section 4 to
identify the topological defects in polymer spherulitic
grain patterns.
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3.2. The Aboav-Weaire law

Many physical random cellular networks have similar
structures and evolve to a steady state, characterized
by a scaling (stationary) distribution of cell sizes,
shapes and correlation. The similarity of the scaling
state across systems moulded by different physical
forces has led many workers to seek an explanation
independent of the driving forces [3, 4]. Among the
properties of the scaling state, the probability, P(n), of
cells with n sides is the most frequently measured
in experimental systems. The best-obeyed empirical
regularity pertains to two-cell correlations. The
Aboav—Weaire law [ 3] states that on average the sum
of the number of sides of the cells immediately adjac-
ent to an n-sided cell, nm(n), is linear in n:

nmn) = (6 —a)n + (6a + W,) (1)

where L, is the second moment of the P(n) distribu-
tion. The second moment is defined as p, =
Y, Pm)(n— {n)>)?, where {(n) is the average with re-
spect to the same distribution, P(n), and whose vari-
ance, |, = {n*> — {n)?, is a convenient measure of
topological disorder. The first moment for networks of
trivalent vertices must be 6.

The Aboav—Weaire law consists of three assertions:

(i) nm(n) is linear in n.

(it) The slope of nm(n) is approximately 5,1.e.,a ~ 1
(empirically).

(ii)) Regardless of the slope of nm(n), the following
relation holds: 6m(6) = 36 + p,.

The last assertion is a direct result [12] of the
linearity of nm(n). Although maximum-entropy theory
and microreversibility arguments [ 10] establish a the-
oretical basis for the linearity mentioned above, the
value of the slope observed in experimental studies
remains unexplained [12—17]. On the other hand, for
finite networks {n) # 6, the topological model gives
the relation [15]

nm(n) = ((ny —a)n + [Knm(n)) — (n)? + <npa]
@

The Aboav—Weaire law does not apply to the
Voronoi diagram. Instead, computer simulations [19]
for a set of 2D Poisson distributed sites shows that
a quadratic function fits well:

m(n) = q~|—é—i-—2 3)
n o n

The values of the three parameters are g = 5.01,
b =9.68 and ¢ = — 11.18.

3.3. The Lewis—Rivier law

Besides the topological description, the number of
sides n is relevant for both geometrical and physical
reasons. The size of the cells measured by perimeter
and area is an important aspect of random physical
cellular structures. The correlation between the sizes
and the shapes of the cells is described by the relation
between average area, <{a,», and the number of the
sides. Lewis [20,21] (see also [3]) found that the
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average area, <{a,y, of n-sided cells increases mono-
tonically with increasing n. Rivier [10] presented
a theoretical treatment based on the maximum-en-
tropy principle that also predicts a linear relationship
between <a,» and n The resulting Lewis law of
Lewis—Rivier relation is an empirical linear relation-
ship between the average area, <{a,», and n:

@,y = 14 An—06) )

where A is the gradient. For 2D Poisson—Voronoi
diagram, A = 4. Statistical thermodynamics analysis
gives a different exponent: <{a,> oc n®> [22,23].
The random-neighbour model [24] shows the
linear relationship as an asymptotic law for large
n (n > 6). Unfortunately, experimental results are not
conclusive.

4. Grain-boundary multigraph and
topological defects

In this section, we characterize the multigraphic con-

struction of the GBN and its dual nearest-neighbour

network (NNN) in order to identify the topological

defects in iPP spherulitic grain patterns.

4.1. Spherulitic grain formation

Fig. 2 presents a series of images that show the typical

process of pattern formation of the network of grain

boundaries during isothermal crystallization of isotac-

tic polypropylene at 135 + 0.1 °C. The images indicate

the following three steps in the crystallization process:
(i) the simultaneous nucleation;

(i1) multispherulitic growth;

(i) impingement.

Simultaneous nucleation means that all the nuclei
are formed at the same time. Every spherulite grows
with the same constant front velocity. When two or
more spherulites meet, impingement consisting of
“growth—touch—stop” occurs. The interspherulitic
boundaries are formed during this impingement step.
When the impingement step is finished, the 2D net-
work of grain boundaries is eventually formed. Almost
all the edges of grains are straight lines and are the
bisectors of the nuclei (the sites).

4.2. Graphic description

In order to characterize the complex structures of
spherulitic grain patterns, it is necessary to have
a through understanding of the relationships between
the GBN and the corresponding NNN of nuclei centre
points. As an example, we show in Fig. 3a the 2D
GBN obtained by edge tracking the image of Fig. 2h.
This 2D GBN has the appearance of a Voronoi dia-
gram. Analysis of spatial tessellation by image pro-
cessing confirms that the edges of the GBN are the
straight-line bisectors of the sites (the centres of
nuclei). Fig. 3b is the combination of the GBN (the
thick line) and the NNN (the thin line) constructed by
the nearest-neighbour searching. The NNN resembles
the dual of GBN. Fig. 3b presents a duality which
looks like Fig. 1. However, Fig. 3b clearly shows that



the GBN is not a complete connectivity-three network
because, in many instances, more than three sites are
cocircular. For example, in Fig. 4, which is a local
image taken from Fig. 2h, the cocircularity of the sites
was tested by the graphic function of Microsoft
Words® software. The analysis shows that it contains
two four-point cocircle and one six-point cocircles in
the middle right. Fig. 4 shows that the multiple cocir-
cularity of the sites is due to the presence of the
fourfold, fivefold and sixfold vertices. For example, the
upper circle shows the presence of a fourfold vertex,
and the middle circle shows the presence of a sixfold
vertex.

From the above analysis, a special characteristic
of the spatial arrangement of the polymer GBN is
that there is a high density of singular vertices, which
are mixed configurations containing vertices with
z=3,4,5,6, where z is the connectivity. Thus the
fraction of trivalent vertices, f._3, is less than one:
f-=3 < 1. For example, the fraction of trivalent vertices
for the nearest-neighbour graph shown in Fig. 3 is
f.=3 =0.6731. Fig. 5 shows the NNN corresponding
to the GBN network shown in Fig. 3. The full circles
represent the polygons which are not triangles and
arise from the non-trivalent vertices. Fig. 6 shows the
ratio of z > 3 vertices to z = 3 vertices corresponding
to the number of grain sides, n. The figure shows that
four-sided grains have more multiple vertices. As
topological defects, multiple vertices are structurally
unstable with respect to both topology and physical
dynamics.

5. Topological correlation

In this section, we characterize the topological cor-
relation of iPP spherulitic grain patterns and explore
the deviations of the experimental results from the
Aboav—Weaire relation. Below we discuss the prob-
ability distribution function of two-grain arrange-
ments, and the effects of topological defects (such as
multiple vertices) on topological correlation.

5.1. Definitions
Three correlation functions will be considered:

(i) the local grain correlation function, mi(n),
which is the average number of sides of the neighbours
of the jth considered n-sided grain, where [ is the
number of the neighbours, and where | = n for the
connectivity-three cellular patterns;

(i) the two-grain correlation functions, M;(n),
which is the average number of k-sided grains adjoin-
ing an n-sided grain

(iii) the Aboav—Weaire relation (see Section 3 and
Equation 1), where m(n) is the average sum of the
number of sides of the grains immediately adjacent to
an n-sided grain.

From the definition, we have

AL
min) = <3 mim) (5a)

where N, is the total number of the considered n-sided
grains.

For the connectivity-three cellular pattern, the fol-
lowing relationships hold [12]:

Y Mi(n) = n (5b)

nm(n) = Y M(n)k (5¢)
k

As a topological defect, singular vertices (vertices
with z > z; = 3) in polymer spherulitic grain patterns
introduce new features in the topological correlation
functions. More specifically, the topological defects
introduce complications in the analysis of the local
grain correlation and the two-grain correlation. It
turns out that there are two types of neighbour in the
topological network for a corresponding grain (n
grain) which has singular vertices:

(1) unconditional neighbours: associated n grains
that share one side with the grain under consideration;

(i1) conditional neighbours: associated grains that
share one multiple vertex (z > 3) with the grain under
consideration.

In order to gain some insight of the influences of the
singular vertices on the local grain correlation, we
show in Fig. 7 a typical situation arising in actual
polymer cellular patterns. The central grain in Fig. 7a
is a five-sided grain. It has five nearest neighbours
which are unconditional and associated n grains
which share one side with the grain under considera-
tion. Because there is a four-fold vertex (indicated by
a circle) on this central grain, it has also one condi-
tional neighbour (dotted grain). The conditional
neighbour is a five-sided grain that shares one four-
fold vertex with five-sided central grain. The presence
of a multiple vertex suggests two ways to calculate the
local grain correlation.

(a) The wunconditional local grain correlation,
mi(n, v), is calculated from the following equation:

mj(n,u) =

> %(iﬁjxk) =) %(ixjxk) (6a)
k=3 k=3
where i;; is the number of the k-sided unconditional
neighbours of the jth considered grain, and where [ is
the number of the unconditional neighbours. For
example, for the central grain in Fig. 7a,
ms(5,u) =3%x5+1x6+1x7)/5=>5.6.

(b) The unconditional plus conditional local grain
correlation, m{ (n, u + c¢), is calculated from the follow-
ing equation:

y EEh e (6b)

min,u+c) =
1l ) =y n+

where i;;; + i; is the sum of the numbers of the k-sided
unconditional plus conditional neighbours of the jth
considered grain, and where [, is the number of condi-
tional neighbours. In Fig. 7a, the considered central
five-sided grain has five unconditional neighbours and
one conditional neighbour, [, =1; therefore,
ms(S,u+c)=(B+)x5+1x6+1x7)/5+1)=55.

If we apply the vertex decay operation to the mul-
tiple vertex in Fig. 7a, which transforms the multiple
vertex to three-connective vertices, as shown as
Fig. 7b, the pattern becomes a pure three-connective
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network, and the pure local grain correlation is
ms(5) =(1x5+3x6+1x7)/5=6. This clearly
shows that the local grain correlation of the grain
pattern in the presence of singular vertices is different
from the defect-free network.

5.2. Analysis

Substituting Equations 6a and 6b into Equation 5a,
the average values of local grain correlations are
given by

¢

W = £ Y mew = 3 Y Laxh
mmn,u) = — m(n,u) = — — (i
Nnj:1 ! Nnj:l k=31 b
(7a)
1M
mm,u+c) = Y my(n,u + c)
j=1

N,
an

ik + Tkj
= — ———xk (7b
Nn jgl kgg; n+ lc ( )

Likewise, from the definition of two-grain correlation,
we have the following equations:

Figure 2 A series of images of the typical process of pattern formation of the network of grain boundaries during isothermal crystallization of

iPP at 135+ 0.1°C.
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Mnu+c) = — Y G5 +i) (6
Nn j=1

In order to identify the basic differences between
the correlation functions for the grain patterns and the
connective-three cellular pattern, one could test the
validity of Equation 5 for all the above relationships.
First of all, the relation m(n) = Y m/(n)/N, always

holds by definition.

Secondly, to test the relation ), My(n) = n, we de-
fine the probability of k-sided neighbours of an n-sided
grain as P;(n) and the average numbers of k-sided
neighbours as {jy;) for n-sided grains. The following
relationships hold because of statistical consider-
ations:

. %
1 and <i};) = ﬁz i = Pr(n)xn

©

Z Py(n)
k nj=1
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Figure 3 The relationships between the GBN and the correspond-
ing NNN of nuclei centre points: (a) the 2D GBN obtained by edge
tracking the image of Fig. 2h; (b) the combination of the GBN and
the NNN constructed by nearest-neighbour searching.

Hence, for unconditional neighbours, we find that

Y Mi(n) = Z<NL Z, i};) = > iy
= ; {Pi(n) x n}
= nx (Z Pk(n)>
= n (10a)

but, for unconditional plus conditional neighbours, we

find that
1 Nau
. (ﬁ Y. (g + iij))
nj=1

Y. My(n,u + ¢
P
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Figure 5 The full circles on the faces of the NNN indicate polygons,

which are not triangles.

Thirdly, to test the relation nm(n) =Y, M (n)k, we

have the following:

nm(n, u)

and

Z|— Z|s

=
—_
3
=]
=

=

~
-

M=

> (i x k)

1 k=3
i};-)xk

(2

Liicj] LK]

n

(11a)

nj

g

<
I
—

S
T

|~

% 2. (igjx k) (11b)

nj=1k=3
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Figure 6 The ratio of z > 3 vertices to z = 3 vertices corresponding
to the number of grain sides, n, in iPP spherulitic grains.

where [i;;] is a matrix of order k x N,,, and [k] is a one
column matrix. Comparing Equations 11a and 11b
shows that the relation nm(n) = Y, My (n)k is valid for
unconditional neighbours.

For unconditional plus conditional neighbours,
similar computations yield

N,
nm(n,u +¢) = n Y my(n,u + c)
Nn j=1
1 N n
= e i) Xk
N, j; k; <n+lc(k’ i) >
(12a)
oM
Y My(mu+c)xk = — (i + ip) x k
k=3 Ny =5 =1

(12b)

so that nm(n, u + ¢) # Y, My(n, u + c)k for uncondi-
tional plus conditional neighbours.

Representative experimental data regarding the
correlation between k-sided neighbours of n-sided
grains are compared with the above theoretical results
in the example shown in Table I, which describes the
sequence of the statistical details and analyses applied
to the experimental data. The statistical data in
Table I relate to the observed characteristics of five-
sided grains in one selected image (Fig. 1h). The num-
ber of five-sided grains is N,-s = 40, among about
200 grains in this image. The neighbouring k-sided
grains have k =4,5,6,7,8. Table I is organized as
follows:

(i) The first column is the identification number,
nj, of the five-sided grain.

(i) The middle columns of Table I provide the
statistical data from the experiments, which indicate
the numbers of k-sided neighbours of the correspond-
ing five-sided grains.

Five-sided
unconditional
neighbour

Five-sided

Five-sided

Five-sided
{centre grain)

Seven-sided Six-sided

(a)
prd
Six-sided P X
yJ
Five-sided
Six-sided
Five-sided
{centre grain)
Seven-sided Six-sided
(b}

Figure 7 A diagram used to analyse the influences of the singular
vertices on the local grain correlation. (a) The central five-sided
grain has one conditional neighbour (the dotted grain) which is
a five-sided grain that shares one four-fold vertex with the five-sided
central grain. (b) After vertex decay, the multiple vertices transform
to three-connective vertices.

(i) The last two columns on the right give the local
grain correlation, mJ(5, u) and mJ(5, u + c), which are
calculated using Equations 6a and 6b for the uncondi-
tional and the unconditional plus conditional neigh-
bours, respectively.

@iv) my(5,u) and my(5,u + c) are presented in the
right bottom corner of Table 1.

(v) the bottom row gives the two-grain correla-
tions, M, (5, u) and M, (5, u + c), which are calculated
using Equations 8a and 8b for the unconditional
and the unconditional plus conditional neighbours,
respectively.

For example, the fourth row in Table I shows that
the neighbours of the five-sided grain with (n; = 1) are
one four-sided grain (i4, = 1), two five-sided grains
(isy = 2), and two six-sided grains (ig, = 2), so that
mi(5,u) = (1 x4 4+ 2x5+2x6)/5=152. In the same
way, we get the values of m}(5, u) for n; = 1 to n; = 40,
which are listed in the right column of Table I, so that
the average mj(5,u) is my(5,u) =Y mi(5, u)/40 = 5.7
(see the bottom right corner of Table I). Further-
more, for all the four-sided neighbour k =4 of the
considered five-sided grains, M(5, u) =Y i4,/40 =
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TABLE 1 The correlations between k-sided neighbours of n-sided grains (e.g., n = 5)

n grain Number of k-sided neighbours of n-sided grain, i, my (5)
identification [ —
number,n; k=3 k=4 k=5 k=6 k=17 k=28 my(5, u); my(5,u+c)
(Il=n (=n+l)
h le Iku Tke liu Iie liu Tie Tku ke liu I
1 1 2 2 5.2 5.2
2 3 1 1 5.8 5.8
3 1 2 1 1 5.6 5.6
4 1 2 1 1 5.6 5.6
5 1 2 1 3 5.6 5.2
6 2 2 3 5.6 5.429
7 1 1 1 2 1 1 5.6 5.429
8 2 3 5.6 5.6
9 1 1 1 1 5.2 5.33
10 1 2 2 52 52
11 1 2 2 6.2 6.2
12 2 1 2 6.0 6.0
13 3 1 1 5.6 5.6
14 4 1 6.2 6.2
15 1 3 1 6.0 6.0
16 2 1 1 1 1 6.2 6.167
17 1 2 1 1 1 6.4 6.33
18 1 1 1 2 6.4 6.4
19 2 3 5.6 5.6
20 3 1 1 5.8 5.8
21 3 1 1 1 6.0 5.83
22 4 1 52 52
23 1 3 1 2 1 54 5.375
24 1 1 1 2 1 5.6 5.5
25 1 1 3 1 5.8 5.67
26 1 1 1 2 1 5.6 5.33
27 2 1 2 1 1 5.0 5.14
28 2 1 1 1 1 1 52 5.29
29 2 1 2 1 1 5.0 4.86
30 2 3 2 5.4 5.0
31 1 2 1 1 5.6 5.6
32 2 2 1 1 52 5.5
33 2 1 1 1 6.2 6.2
34 1 2 1 1 5.4 5.4
35 2 1 1 2 1 5.2 543
36 1 3 1 1 5.8 5.83
37 2 1 1 2 2 1 5.4 5.375
38 1 2 1 1 6.4 6.4
39 2 2 1 6.4 6.4
40 1 1 1 2 6.8 6.8
N, =40 Yi, =26 XZ(i,+i) Zi, =68 X(i,+i) Xi,=62 Z(i,+i) Zi, =28 Z(i,+i.) Zi, =16 m(5,u) m(5,u+c)
=35 =78 =172 =31 =57 =56705
M,(5) 0.65 0.85 1.7 1.95 1.6 1.85 0.7 0.76 0.4

TABLE II The correlations calculated from Table I

Unconditional neighbours

Unconditional + conditional neighbours

T Mi(5, 1) m(5, u) = M,(5, u)k/n

2 M, (5, u+c)

m(5, u+c) 2 M (5, utc)k/n

S=n 5.7 5.7 =m(5, )

54 5.6705

5.955 #m(5,u+c)

26/40 = 0.65 (see the bottom row and the fourth
column).

Table II shows the results of calculations based on
the experimental data of Table I for M(5,u) and
my(5, u). These experimental data and similar analysis
performed on a large scale (5000 grains) show that the
relations in Equation 5 are valid only for uncondi-
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tional neighbours; however, they are not valid for
unconditional plus conditional neighbours.

5.3. Topological relations
As discussed in Section 3.2, m(n) is the most impor-
tant topological parameter that can be measured in



nm(n)

Figure 8 The plot nm(n) versus n of experimental results of iPP
spherulitic grain pattern formed at 135 + 0.1 °C during isothermal
crystallization in the simultaneous nucleation case. (@), pure uncon-
ditional neighbours; ([7J), unconditional plus conditional neigh-
bours; ( ), regression; (—), the Aboav—Weaire law; (- ),
Poisson-Voronoi; (— —), topological model.

experiments. In this section, we analyse the experi-
mental data with respect to the Aboav—Weaire rela-
tion. Fig. 8 shows nm(n) as a function of n for uncondi-
tional neighbours, and unconditional plus conditional
neighbours, respectively. We find a linear regression
relation nm(n) = 5.0503n + 3.2376, for the uncondi-
tional neighbour, with the correlation coefficient
R =0.9974. The plots of nm(n) versus n for uncondi-
tional neighbours and for unconditional neighbours
plus unconditional neighbours are almost identical.
Comparing this experimental fit with Equation 1, it is
found that the slope is nearly 5. The constant a is
normally chosen to be 1 for the Aboav—Weaire law
[3], but we find that a =6 — 5.0503 = 0.9497. We
also find that the intercept is not 6a + p,, where the
second moment, [, = 1.233, is calculated using p, =
Y., Pm)(n — {(nd))?, where <{n) is the average with re-
spect to the same grain side distribution, P(n). This
means that there is a deviation between the experi-
mental results of the iPP spherulitic grain pattern and
the Aboav—Weaire law.

We compare the experimental data with Equation
2, which is the theoretical result of 2D simulation of
the Poisson—Voronoi diagram, as shown by the dot-
ted line in Fig. 8. The disagreement between the ex-
perimental data and this line shows that the iPP
spherulitic grain pattern is not a Voronoi diagram.
Because the experimental value for the number of the
sides of the iPP spherulitic grain pattern is not
6 ({ny = 5.445), we also compare the experimental
data with Equation 3, which is the relation nm(n)
versus n for finite networks ({n) # 6) from the
topological model [15], as shown by the broken line
in Fig. 8. The comparison shows that the experimental
data fall close to the broken line representing
the theoretical prediction of the topological model.
However, the slope of the broken line is that

5.6 [

m(n)

m(n)

5 1 ! 1 1 ! I
2 3 4 5 6 7 8 9

Figure 9 The curves of m(n) versus n for the pure unconditional
local grain correlation, my(n, u) (@), and the unconditional plus
conditional local grain correlation, my(n,u +c) (O), of iPP
spherulitic grain pattern formed at 135 + 0.1 °C during isothermal
crystallization in the simultaneous nucleation case, which is shown
in Fig. 2.

{ny —a=>5445—0.9497 = 44953, which is signifi-
cantly different from 5, as indicated by experimental
data.

In order to explore the above discrepancies between
the experimental data and the Aboav—Weaire rela-
tion, we have to consider the contribution of the
topological defects (the singular vertices) to the
Aboav—Weaire relation by exploring the local grain
correlation and the two-brain correlation functions.
Fig. 9 presents the curves of m(n) versus n for the pure
unconditional local grain correlation, m;(n, u), and for
the unconditional plus conditional local grain correla-
tion, m;(n, u + c), of iPP spherulitic grain pattern for-
med at 135 + 0.1°C during isothermal crystallization
in the simultaneous nucleation case, shown in Fig. 2.
The pure unconditional local grain correlation,
my(n, u), and the unconditional plus conditional local-
grain correlation, my(n, u + c¢), are almost identical.
Fig. 9 shows that the curves of m(n) versus n are not
smooth, as in the case of cellular structures with all the
trivalent vertices. This non-linearity can be concealed
by plotting nm(n) versus n as shown in Fig. 8.

Because the common practice of plotting nm(n) ver-
sus n can conceal deviations from the Aboav—
Weaire law as m(n) does not vary much with n, we
shall focus on the two-grain correlation, M,(n), to
explore the details. Fig. 10 shows that two-grain cor-
relations, M, (n), are clearly non-linear with n for the
iPP spherulitic grain pattern. It shows that
M (n, u + c)is larger than M,(n, u). It has been argued
that the Aboav—Weaire law is a consequence of a lin-
ear correlation function, M (n) = A, + Byn, which ob-
viously yields a linear relation between nm(n) and n for
all k, and that maximizes the entropy by reducing the
number of constraints [10]. Such correlations are
based on purely topological arguments [10-17],
where the area and perimeter of the cells are not
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Figure 10 The two-grain correlations, M (n,u + ¢) (O) and M;(n, u) (@), of iPP spherulitic grain pattern formed at

isothermal crystallization in the simultaneous nucleation case.

considered. The results that we presented above show
that the Aboav—Weaire relation is seemingly linear,
but it does not present linear two-cell correlations.
The main difference between most of the real cellular
systems and topological models lies in the explicit
consideration of area, perimeter and number of sides.
These three variables cannot be trivially decoupled.
Purely topological models do not incorporate this
competition between topology, geometry and growth
dynamics and does not seem to be suitable to describe
the polymer spherulitic grain pattern.

6. Geometrical and topological
correlation

In order to obtain a better understanding and micro-
structural quantification of polymer spherulitic grain
patterns, we study the geometrical properties and the
dynamic processes of topological rearrangement.

Fig. 11 plots the experimental data for the average
grain area, {d,, as a function of n for the grain pattern
shown in Fig. 2. It clearly shows that the Lewis law is
not satisfied because the polymer spherulitic grain
is an assembly of grains with different sizes. The
Lewis plot is S-shaped owing to the polydisperse grain
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Figure 11 The experimental results (@) of the average grain area,
{a,y, as a function of n for iPP spherulitic grain pattern formed at
135 + 0.1 °C during isothermal crystallization in the simultaneous
nucleation case. (----- ), the Lewis law.

packing. This means that the correlation between the
sides and the areas is non-linear. An extensive study of
this correlation between the grain sizes and the shapes
is currently under investigation.



As mentioned in Section 2.2, the network of poly-
mer polygrains does not exhibit any detectable cha-
nges in a practical time scale at room temperature. In
situ observation of topological rearrangements of the
GBNs of polymer spherulitic grains shows that there
are some topological changes during thermal activa-
tion experiments at higher temperatures (higher than
the crystallization temperature but below the melting
point) over long times. There are two useful character-
istics of a 2D grain: grain area, 4, and its topological
class, n (the number of sides in the grain). The en-
semble of grains may be described in the phase space
(n, A) by introducing a one-particle density function,
F,(A,t), giving the mean number of grains of the
topological class, n, and area, A4, per unit area of a 2D
grain pattern at the moment of time, t. Fradkov et al.
[11] introduced a new function

A
<n<@>> = ;nF,,(A,t)/;F,,(A,t) (13)

The function <{n(A4/{A4))) expresses the area-topologi-
cal class correlation, where A4/{A4) is normalized grain
area and {A) is the average value of grain area.
Extrapolation of the experimental dependence {n(A/
{A»)) to A/(A) =0 gives the mean value of the
topological class of the vanishing grains. Fig. 12 shows
the experimental results of the dependence of mean
topological class of grains {n(A4/{A4))> on normalized
grain area. Fig. 13 shows that the intercept is close to
{n(A/<{A»)> = 4.003 87; thus, the most unstable grains
are four-sided grains.

We have observed that the most likely change in
polymer grain shapes is the decay of multiple vertices
by the addition of edges at the vertex to form short
sides during the thermal activation experiment.
Fig. 13 shows that a four-sided grain changes its shape
and another loses one edge to a neighbour that cha-
nges its shape during the thermal activation experi-
ment at T = 150°C of the sample of iPP spherulitic
grain pattern formed at 135 + 0.1°C. A non-convex

<
<
E 5
: ‘. : : :
4 @ i <n(0)>= 4.003 87 ovvvveeeeesssssiveneneiennas .
S
S A T I S B
0 0.5 1.0 1.5 2.0 2.5

A/A)

Figure 12 The experimental results of the dependence of mean
topological class of grains, {n), on the normalized grain area of iPP
spherulitic grain pattern formed at 135 + 0.1 °C during isothermal
crystallization in the simultaneous nucleation case.

Figure 13 A four-sided grain losing one edge to a neighbour that
changes its shape during the thermal activation experiment at
T = 150 °C of the sample of iPP spherulitic grain pattern formed at
135 + 0.1°C: (a) before activation experiment; (b) after activation
experiment.

polygon-shaped grain seen in Fig. 13, which is the
amalgamation of one four-sided grain and one of its
neighbours, was observed after the process of losing
one edge was finished. Therefore, Fig. 13 appears to
confirm the prediction of Fig. 12. Unlike soap froth
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and 2D normal grain growth of polygrain in metals,
no grain disappearance or grain shrinkage [8] and no
topological cascade of neighbour switching [8] are
observed is polymer spherulitic grain systems.

7. General remarks

The above experiments and analysis suggest that the
distinguishing features of topological properties of
polymer grains are due to the topological defects and
the lack of mobility of the polymer grain boundary
system. Topological defects do not exist or are only
short lived in other systems, but in polymer grains
they are fairly permanent. The polymer grain-bound-
ary mobility is dependent on the submacromolecular
organization of grain boundaries and inside texture of
the spherulite. The spherulites consist of individual
lamellar crystalline plates with amorphous material in
the space between the lamellar structures. However,
little is known about the submacromolecular organ-
ization of the spherulitic grain-boundary region. The
highly complex grain boundaries are inhomogeneous,
owing to the possible discontinuities between crystal-
line—crystalline and crystalline—amorphous phases
and the continuity of the amorphous phase. The rela-
tive orientations of neighbouring grains, the orienta-
tion of the boundary surface itself with respect to the
two grains, and the unknown surface tension of the
grain boundary are all involved in the grain-boundary
motion. The movement of the spherulitic grain bound-
aries may be coupled with the secondary crystalliza-
tion in the grain-boundary region. The loss or disap-
pearance of a side could be due to the matching of the
crystalline—crystalline and amorphous—amorphous
phases of the neighbouring grains. Owing to the slow
dynamics of macromolecular diffusion across and
along the grain boundary, the uniform grain-bound-
ary mobility is quite slow. When the anisotropy at
some location is too large, the vertex boundary condi-
tions are no longer strong enough to produce curva-
ture in grain boundaries, and the mobility may be
zero. A possible mechanism for the grain-boundary
motion is due to the impingement process which has
a relatively high energy. The grain boundary relaxes to
a lower-energy structure with a reduction in unfavour-
able polymer chain conformations. Other driving for-
ces for grain-boundary motion, especially at relatively
high temperatures, may include unrelaxed stress fields
and the curvature elasticity of the lamellae contained
within spherulite.

The differences between polymer spherulitic grain
patterns and small molecule cellular systems are
essentially due to the differences in their molecular
dynamic characteristics. Because they are the long
flexible macromolecules, the corresponding collective
length scale for polymer polygrain structures is dis-
tinctly larger. Therefore, the dynamic phenomena are
very much slower.

8. Conclusions
An experimental investigation of large-scale (around
5000 grains per samples) pattern formation of polymer
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spherulitic grains was carried out under simultaneous
nucleation conditions. Comprehensive image analysis
was performed on the topological correlation and
geometrical distributions of grain boundary shapes
and grain sizes, as well as on the topological re-
arrangement during thermal activation experiments.
The new findings are as follows.

1. The multiple-graphic construction of GBNs and
the NNNs indicate that the topological properties are
significantly different from other 2D cellular struc-
tures because of the observation of a higher percent-
age of multiple vertices. It is shown that polymeric
GBNs are different from the classical Voronoi dia-
gram because the NNNs are an incomplete connect-
ivity-three graph.

2. Multiple vertices are singular topological defects
that introduce new features in topological correlation
functions. Statistical analysis and experimental data
show that the fundamental relationships of topologi-
cal correlation parameters, which are expressed in
Equation 5, are valid for unconditional neighbours,
but invalid for unconditional plus conditional neigh-
bours.

3. The experimental data of spherulitic polygrain
structures seemingly yield a linear Aboav—Weaire re-
lation, which states that, on average, the sum of the
number of sides of the cells immediately adjacent to an
n-sided grain, nm(n) is linear in n, with a slope very
near 5. However, the intercept is not “6a + p,”, where
L is the second moment, and where the constant a is
around 1.

4. The two-cell correlation functions, M(n) (the
average number of k-sided grains adjoining an n-sided
grain), are clearly highly, non-linear with n. It is im-
portant to analyse the non-linearity of M, (n) to evalu-
ate the topological correlation because nm(n) =
Y Mi(n)k. The common practice of plotting nm(n)
versus n can conceal deviations of the non-linearity of
the experimental data.

5. It is very valuable to study the geometrical
properties and the dynamic processes of topological
rearrangements for understanding the dynamic
correlation between the geometry and topology of
polymer spherulitic grain patterns. Experimental
results show that the Lewis plot (the relation of
average area of grains to the number of sides) is
non-linear and S-shaped owing to the polydisperse
grain packing. Experimental observations and statist-
ical data show that extrapolation of the dependence of
the mean topological class of grains, {n), on nor-
malized grain area indicates the mean topological
class for vanishing grains to be about {(n) = 4. This
means that the four-sided grains are the most unstable
grains.

6. The distinguishing features of topological prop-
erties of polymer grains are due to the topological
defects and the lack of mobility of the polymer grain-
boundary system. The results of this work indicate
that polymer grain systems are topologically unstable
structures that evolve slowly. It is difficult for polymer
spherulitic grains to relax from multiple vertices to the
trivalent vertices and, ultimately, to a stationary cellu-
lar structure.
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